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Abstract—	 This paper presents a MapReduce-based 
implementation of using high-dimensional image streams applied 
to feature identification to provide fast computer vision 
applications. We argue that feature identification is a 
preliminary step of many computer vision tasks like object 
recognition, activity understanding, content-based retrieval etc. 
which is computationally expensive and often becomes a bottle-
neck in real-time applications. We considered the state-of-the-art 
feature extraction method - Scale Invariant Feature Transform 
(SIFT) - and used MapReduce to parallelize the computation. We 
considered the sandwich making dataset from TUM, comprising 
of 1.94 m images. Feature detection on a local machine took an 
estimated of 46.9576 days while using MapReduce we were able 
to process the same in much reduced time: 1.46 days on a 8-node 
cluster and 0.586 days using 20 machines on Amazon cloud. 
Hence, we achieved the same performance with a speedup of 32 
and 80 on the two systems using Mapreduce. The major 
contribution of this paper is that we proposed a method to use 
MapReduce on cloud to increase computational speed of feature 
extraction and matching for computer vision applications, 
without incorporating the additional cost, resource-consumption 
and expertise incurred due to parallelization. 
 

Keywords—MapReduce; SIFT; Computer Vision, Cloud 
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I.  INTRODUCTION  
As the computing devices proliferate into our everyday lives, 
and we inch towards the pervasive computing paradigm, we 
notice a broad range of innovative computing methods and 
their applications. Technological globalization and advances 
have led to a wide variety of modalities of collaborative 
computing i.e. the use of multiple computing agents to solve 
individual computational problems. The concept of 
interdisciplinary exchange of information and collaboration 
has resulted in a mushroom of innovative computing 
applications. We see computer vision and image processing 
joining hands with distributed computing; finance, economics 
and business intelligence meeting data mining and big data 
analytics; and biology and medicine hand-in-hand with 
computers. Thus, many issues that seem daunting within a 
particular domain are easily solved when integrated with 
others.  

As a scientific discipline, computer vision is the branch of 

computing that extracts meanings out of visual data i.e. images 
and videos. This data can be coming from single or multiple 
cameras, covering static or dynamic scenes with changes in 
viewpoints, illumination and/or scale; and may be noisy with a 
lot of clutter. Interpreting the scenes on the basis of this data 
and extracting information like object recognition and 
tracking, activity recognition etc. can be challenging and time-
consuming in the real-world and involves a number of pre-
processing steps. Consider Figure 1 that shows the general 
computer vision and image-processing framework. As can be 
seen, all major computer vision and image processing 
applications begin with some form of pre-processing including 
feature extraction [1, 2]. As the size of data grows, this 
prerequisite step becomes more and more time consuming, 
and can become the bottle-neck in many real-time 
applications. One of the solutions is to move towards 
parallelization and process multiple images at once. The major 
motivation behind the parallelization is that many advances in 
high performance computing are occurring at an ever-
increasing pace. Especially with cloud computing emerging as 
an alternative to supercomputers and taking out the inherent 
complexity of parallel processing and programming from the 
equation, has enabled researchers across diverse fields to 
explore computation intensive solutions, which were 
otherwise not possible. When deciding to exploit the 
parallelizing potential in computer vision tasks, one can look 
into a number of factors like parameters, images or pixels etc.  
It turns out that the problem of handling one microscopic 
image (e.g. 86273 by 81025 pixels 78.12 GB) is totally 
different from the scenario of having a larger data set of 
smaller images (e.g. 48469 images @ 6.5 MB/image 308 GB). 
While, in the first case, the major problem is memory 
management, in the later it is more about processing 
efficiency. This calls for a platform where the task at hand can 
be divided into smaller chunks and assigned to different 
processing units that can work in parallel and distributed 
environment.  
The paper is organized as follows: We present a review of 
existing literature on feature extraction and parallelism for 
computer vision applications in Section II. Next, we give 
details of SIFT in Section III. Sections IV and V introduce the 
distributed    computing    paradigms and   MapReduce   for  



 
 
 
 
 
 
 
 
 
 
 
 
 
computer vision applications. We discuss the experiments and 
observations in Section VI and present the conclusions in 
Section VII. 

II. LITERATURE REVIEW 
 Feature Extraction: One of the most important tasks in 
computer vision and image processing is to extract features 
from an image [1]. Features efficiently represent the image in 
the form of unique interest points. Extracting features is useful 
because it reduces the size of data, and the subsequent 
computations consume less time. Feature extraction can be 
based on shape, color, appearance etc. and may be represented 
as histogram, Bag of Features [2] etc. 

Shape detection [1]–[3] represents the information about 
the geometric shape of an image. On the other hand, color 
histogram is the representation of color values with the number 
of pixels at each value. Typically a global histogram is 
computed for the complete image. The main drawback of this 
approach is the loss of regional information. As an alternative, 
recent research uses grid based histogram by dividing the 
image into sub region. The initial work in point a detector was 
carried out by Moravec [4], which formed the basis for the 
detection of salient points around the corners of an object. 
Some other point detector like Harris [5] and Smallest 
Univalue Segment Assimilating Nucleus (SUSAN) [5]–[7] for 
corner detection do not form a descriptor. The process of 
matching them is purely location based. They are typically 
used for motion detection, image registration [8], video 
tracking [9], image mosaicing [10], panorama stitching [11], 
[12], 3D modeling and object recognition [13], [14]. Xiao and 
Shah [15] introduced an affine invariant feature namely edge-
corner and it was based on Singular Value Decomposition 
(SVD) of affine matrix that was robust for the matches over 
two images. Tuytelaars and Van Gool [16] developed an 
opportunistic system to exploit multiple invariant regions and 
combine them to form a robust detector. Matas et al. [17] 
introduced the Maximally Stable Extremal Regions, that handle 
the significant change in scale, illumination conditions, out-of-
plane rotation, occlusion, locally anisotropic scale change and 
3D translation of the viewpoint. Kadir et al. [18] developed an 
interest point detector capable of handling generalized 
invariance to affine transformation and superior insensitivity to 
perturbations and intra-class variation performance for images 
of certain object classes. One of the commonly used and 
reliable detection mechanisms is SIFT (Scale Invariant Feature 
Transform), introduced in 1999 by D.G. Lowe [19]–[23] which 

embeds an image segment descriptor and is widely used in a 
much complex environment like object recognition and large 
baseline matching. It is scale and rotation invariant, gives 
robust results for the changes in illumination and partially 
invariant to different viewpoints. Over the past many years, 
many algorithms have been proposed with SIFT as their basis. 
Some of the renowned ones are Speeded Up Robust Features 
(SURF) [24], Maximally Stable Extremal Regions (MSER) 
[17], Gradient Location and Orientation Histogram (GLOH) 
[25], Local Energy-based Shape Histogram (LESH) [26], 
Binary Robust Independent Elementary Features (BRIEF) [27], 
Binary Robust Invariant Scalable Keypoints (BRISK) [28], 
Fast Retina Keypoint (FREAK) [29], Features from 
Accelerated Segment Test(FAST) [30] and Oriented Fast and 
Rotated BRIEF (ORB) [31]. Each of them targets a specific 
performance aspect like speed, number of features, quality of 
detection or description, but suffers from one or other 
limitation. Hence, even after almost two decades, SIFT is still 
widely used for feature detection. It returns a large number of 
keypoints (in the order of 100s) and gives reliable matches. 
However SIFT suffers from slow speed and is, therefore, not 
suitable for real time applications. For these reasons we used 
SIFT for our experiments. 

Parallelism for Computer Vision Applications: Here we 
describe the work done on distributed computing for image 
processing and computer vision. We will not go into the 
details of parallel computing and programming paradigms, 
rather only cover their applications to computer vision tasks. 
With the cost of capturing, uploading and storing of image and 
video- data going down for the end-user, the data archives are 
getting much larger than before. To make the most of this 
data, we need paradigms that make it easier and faster to 
process this huge amount of data. In recent years, attention has 
been diverted to using distributed computing for processing 
and indexing large-scale image datasets [32]–[36]. Previously, 
researchers would develop, maintain and use their own 
clusters or grids to solve their computation problems. E.g. 
Seinstra et al. in [37]–[39] recognized the problem of ever-
growing dataset size and proposed a color-based object 
recognition solution on an in-house grid. As cloud computing 
became more popular, researchers started using it, so as to 
transfer the load of setup and programming complexity off 
from themselves. For example, in [40], Beksi et al. proposed a 
cloud-based object recognition for robots. Another work by 
Kehoe et al. [41], where they proposed the thin-client model to 
move the complex computations to the Google cloud [42] and 
communicate with the field devices (robot in their) online. 
They were able to recognize and grasp simple household 
objects using a Personal Robot (PR2) [43]. In [44], Paul and 
Park performed multi-view object recognition using their 
smart phone as a thin client and a computer server as a cloud. 
They used their smartphone for image acquisition, developed a 
codebook using the SIFT features and applied Bayes 
classification for the final recognition. In a similar work, 
Lorencik et al. [45] used SIFT, SURF and ORB for feature 
extraction and used the Membership Function ARTMAP (MF 
ARTMAP) and Gaussian Random Markov Field model for 
object recognition over cloud.  

 
Fig. 1: General Image Processing Framework 

 



Classic solutions call for fine-grained control using 
Message Passing Interface (MPI), however, it becomes overly 
complicated. More recently researchers have started going for 
divide-and-conquer approach and MapReduce falls under this 
paradigm. The idea is to divide the huge data set into smaller 
chunks and use the distributed cloud computing platforms to 
process it using regular, low cost and low power computing 
resources. The MapReduce framework is originally developed 
by Google [46] and it is a programming model with the 
supporting implementation for processing extremely large 
datasets. It takes away the intricacies of parallel processing 
and programming and the user has to simply specify two 
functions: the map and the reduce. The Map function 
processes a key/value pair to generate a set of intermediate 
key/value pairs, and the Reduce function combines all 
intermediate values associated with the same intermediate key 
to give a final output. MapReduce is based on earlier 
parallelization models e.g. [47] with the additional advantages 
of providing a fault-tolerant implementation that scales to 
thousands of processors. In recent years, attention has been 
diverted to use MapReduce to solve computer vision problems 
e.g. face tracking [48], landmark classification [49] and visual 
tagging in photos [50]. In [51], Markonis et al. used 
Mapreduce for medical image analysis. They developed an in-
house cluster and ran MapReduce to address a number of 
image-analysis scenarios like parameter optimization for 
Support Vector Machines, image indexing using SIFT and 3D 
feature texture extraction. However, their major focus was on 
developing the cluster and parallelizing tasks for increased 
speed. This is different from our work in several ways. First, 
our approach is generic and can be applied to a number of 
indoor and outdoor scenarios. Moreover, we primarily focus 
on demonstrating that including additional streams from 
different viewpoints results in increased precision, at the cost 
of computational time and we handle the time cost by 
parallelization using MapReduce. Another work by Han et al. 
[52] presents a MapReduce approach for SIFT extraction. 
They reformed the original SIFT using MapReduce to make 
the extraction faster. The benefit of this approach is, however, 
evident in cases involving high definition images with high 
resolution and large number of pixels. Our scenario basically 
deals with large number of low to medium- resolution images 
coming from multiple streams and thus defines a totally 
different use case.  

There are a number of scenarios where MapReduce is not 
the best choice, e.g. DeWitt et al. [53] compared MapReduce 
with parallel database query systems and argued that it is 
much less sophisticated and efficient. According to [54], 
MapReduce model imposes strong assumptions on 
dependence of data and its results are based on these 
assumptions. Chu et al. in [55] pointed out that the model 
hugely depends on the communication channels and is prone 
to failure due to underlying technological failures. They 
remarked that the master node can become a single point of 
failure of the complete system. In [56] Ma and Gu denounced 
these points claiming that these are not “significant” 
limitations and also not technically a problem. However, 

according to them, the problem with MapReduce is that it’s 
“one-way scalable”, which means that by-design it allows to 
scale up to process large datasets, but in turn limits the 
capability to process smaller data items. Some other 
limitations mentioned by the community [57], [58] in general 
are that it’s only for batch processing and not for interactive, 
iterative, streaming or incremental processing. It is also not 
suitable when there are too many keys because then sorting 
takes too long. MapReduce is not considered to be a good 
solution if the values depend on each other from one step to 
another. However, these limitations do not apply to our work, 
because in our case, we have clearly separated data set 
available for batch processing, where the values from one 
frame do not depend on the other. 

More recently, researchers are looking towards Apache 
Spark [59] (initial release in 2014) as a fast, easy-to-use and 
realtime alternative to MapReduce; however for our scenario, 
MapReduce suits better because the high speed of Spark is 
relevant in scenarios when the “same” data has to be 
processed multiple times like in visualization applications. In 
our work the data is continuously changing and each frame 
needs to be processed only once. Similarly, our data is 
available as a batch and hence we do not need any real-time 
processing. 

III. SIFT FOR FEATURE IDENTIFICATION 
One of the first steps to computer vision applications is to 

extract the representative features and match them against a 
model. Some earlier work e.g. [60]–[62] proposed to use raw 
pixels for an effective initial feature representation for 
learning. However, this requires the overall number of pixels 
to be small, which is rarely the case in current imaging 
scenarios. E.g. in our dataset, each image is 1920 x 1080. 
Including the multi-camera views, the overall number of 
pixels becomes overwhelmingly large and hence 
computationally expensive. Most of the current work adopts 
the alternative approach to extract representative features for 
compact and effective representation. In the remainder of this 
section, we present an overview to the Scale Invariant Feature 
Transform – SIFT. 

Though SIFT is one of the oldest techniques, it is the most 
reliable one that is still being used in most computer vision 
algorithm for object detection and tracking, robotic mapping 
and large scale image retrieval. The only disadvantage is that 
it takes more computation time and cannot be applied in real 
time environment. Aniruddha Acharya K and R. Venkatesh 
Babu presented a parallel implementation of SIFT on a GPU 
[63], in which they combined kernel optimization that has led 
to a significant improvement. In this paper we’ve overcome 
this problem by applying MapReduce for parallel feature 
extraction. 

SIFT offers a number of advantages like scale-, rotation- 
and viewpoint- invariance and robustness to illumination 
changes. SIFT is extracted by progressively resizing and 
blurring out images to find features that are stable across a 
number of scales. Each set of images at a given size is referred 
to an octave. Blurring is performed by taking the convolution 



of the Gaussian operator and the original image and it is 
applied to each pixel of an image. Mathematically, it is done 
using Eq (1). 
 L(x, y,σ ) = G(x, y,σ ) * I (x, y)   (1) 
where 
I and L àOriginal and Blurred Images 
G à Gaussian Blur operator 
x, yà Location Coordinates 
σ à Scale parameter or Amount of blur in a particular image. 

(Typically σ = 2  ) 
* à Convolution operation in x and y 
The Gaussian blur operator is defined by Eq (2) 

 G(x, y,σ ) = e
−(x2+y2 )/2σ 2

2λσ 2
 (2)  (2) 

Next it is needed to identify the keypoints which are maxima/ 
minima over multiple scales. For this purpose Difference of 
Gaussian (DoG) is computed. Specifically, a DoG image D(x, 
y, σ) is given by Eq (3). 
 D(x, y,σ ) = L(x, y,kiσ ) − L(x, y,k jσ )  (3) 

where ki and kj represents two adjacent scales. 
Next, each pixel is compared with its neighbors (i.e 8 

comparison), its above image (i.e 9 comparisons) and its 
below image (i.e 9 comparison) making a total of 26 checks. It 
is considered as a keypoint if it is the extrema among all of its 
26 neighbors. Next, to achieve rotation invariance the 
Gaussian-smoothed image L(x, y, σ) for all levels of scale σ 
are considered. For each and every pixel, which is around the 
region of a keypoint, the magnitude and angle is calculated 
using Eqs. (4) & (5) in the Gaussian-blurred image L.  

 m(x, y) = (L(x+1,y) − L(x−1,y))
2 + (L(x,y+1) − L(x,y−1))

2 (4)  

and 

 θ (x, y) = tan−1
(L( x ,y+1) − L( x ,y−1) )
(L( x+1,y ) − L( x−1,y ) )

  (5) 

where  
m(x, y) à the gradient magnitude and θ(x, y) à orientation 
Finally a descriptor vector for each keypoint is computed. This 
step is performed on the image closest in scale to the 
keypoint’s scale. For this purpose a 16 x 16 pixel region is 
considered around each keypoint and is sub divided into 4 x 4 
sub regions. A set of orientation histogram is created on 4 x 4 
subregions with 8 bins each resulting in a descriptor 128 
elements.  

Consider Figure 2 that represents the SIFT keypoints for 
an image. 

 

 

 

 

 

IV. DISTRIBUTED COMPUTING PARADIGMS 
Cluster-, grid- and cloud- computing are the most 

widely used distributed computing paradigms [64]. A number 
of attempts have been made to define the three from a number 
of perspectives e.g. [64]–[67]. Clouds are a collection of low- 
and high- end computers supporting virtualized nodes, which 
are provisioned on-demand and accessible as composable 
service via Web Service technologies such as Simple Object 
Access Protocol (SOAP) [68] or Representational State 
Transfer (REST) [69]. Clusters are typically under a single 
administrative domain and this distinguishes them from grids, 
which are spread geographically and are administered by 
multiple management policies and goals. Also clusters focus 
on enhancing overall system performance, while grids 
enhance application performance depending on the end-users’ 
Quality-of-Service (QoS) requirements. A comparison of 
different distributed computing systems is given in Figure 3. 

V. MAPREDUCE FOR COMPUTER VISION 
APPLICATIONS 

Many image and video processing tasks typically comprise 
of a basic set of computation steps applied to a large amount 
of data. For example, a typical 3-minute video sequence shot 
@60 frames per second (FPS) results in over 10K images, 
with the number growing drastically as we add multiple 
viewpoints (cameras), longer sequences or higher frame rate 
etc. As shown in Figure 1, there are certain pre-processing and 
feature identification steps which need to be applied to each 
frame independently, before a model could be generated for 
the actual application. MapReduce supports scenarios like 
these where the same computation is desired on a stream of 
independent datapoints. Hence, the problem is divided into 
“mappers” that perform the feature extraction on the images in 
parallel; and “reducers” that aggregates the results.  

MapReduce stands on the key-value pairs as the basic data 
structure. Keys and values can be as simple as primitives data 
types such as integers, floating points, strings, and even raw 
bytes, or they may be more complex structures like tuples, 
lists etc [70]. For our work, they are the image descriptors. 

As described above, the programmer has to define a Map 
and a Reduce function which typically take the form as shown 
in Equations (6) and (7) [70]: 
 map : (k1,v1)→ [(k2 ,v2 )]   (6) 

 reduce : (k2,[v2])→ [(k3,v3)]   (7) 
where, [...] represent a list of elements. The mapper is applied 
to each input data point (images in our case) and generates an 
arbitrary number of intermediate key-value pairs (SIFT 
points). This is followed by an implicit “ordering” or 
“grouping” phase to sort the keys. This is important for 
handling the distribution of data across multiple machines. 
Finally, the reducer is applied to all the values with the 
common intermediate key to generate the final key-value 
pairs. 
Consider Figure 4 where we show MapReduce applied to 
parallelize our scenario. It is important to note that most of the 
subsequent    steps    in    image    processing applications are  

Fig. 2: SIFT points calculated for a sample image 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dependent on the initial time-intensive step of feature  
extraction. The number of datapoints depend on SIFT feature 
in each image, the number of images in each stream and the 
number of streams as shown in Eq. (8). Simple maths show 
that this number is quite high for any typical scene and rises 
quickly if we increase number of streams and/or images in any 
stream. In our work, we’ve exploited the parallelism while 
extracting features. Each mapper takes an image one-after-
another as input and returns a set of SIFT-descriptors 
alongwith the location. The reducer using the function 
UPDATEMODEL aggregates these points from multiple 
streams and prepares them for subsequent steps. Consider 
Algorithm 1 that shows the algorithm for our scenario.  

 Datapo int s = (Feature
ijk , locijk )i=0

l
∑

j=0

m
∑

k=0

n
∑  (8) 

where, 
l: no. of features in an image, 
m: no. of frames in a camera stream and 
n: no. of camera streams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1 Algorithm for computing feature identification using 
MapReduce. The UPDATEMODEL function combines the individual features 
from all images for subsequent processing 
1: Class Map 
2:    method MAP (imageID d, image i) 
3:       [<f, l>] ß ComputeFeature(image i) 
4:       EMIT(tuple<imageID d>,tuple<feature[f],location[l]>) 
5: Class Reduce 
6:    method Reduce(tuple< image d>, tuples[t1, t2, ...]) 
7:       MßINITMODEL() 
8:       for all <image d> ϵ tupleID do: 
9:          for all tuple<feature[f], location[l]> ϵ features do: 
10:        UPDATEMODEL (imageID d, feature[f],location[l],    
              model M) 
11:        YIELD (id m, Model M) 

 

VI. EXPERIMENTS AND OBSERVATIONS 
We considered the sandwich making scenario of the kitchen 
dataset from experiments conducted at the Technische 
Universität München (TUM) [71]. The sandwich making 
experiment comprises of 10 subjects, each having 18 
iterations. Each set lasts for approximately 3 minutes, which 
implies a video of 570 minutes. This implies a dataset of 
1.94m images @ 60 FPS. As described earlier, extracting 
features from this huge dataset is a pre-requisite, before a 
model can be generated and trained. This is a time-consuming 
step and we used the Amazon cloud to run Elastic MapReduce 
(EMR) to manage the high computation cost for the huge 
number of images. Using MapReduce allowed us to manage 
the high computation cost resulting due to the multiple input 
streams. We explored HIPI [72] -  a Hadoop Image Processing 
Interface designed specifically for image-based MapReduce 
tasks and supports computer vision algorithms, however, we 
decided not to go for it as the technology is not yet mature, 
and hence there is a lack of benchmarks and expertise [73]. 
Also, HIPI is not suitable for such a huge dataset [74]. SIFT 
computation on local machine (2.5 GHz, dual-core, 8 GiB) 
took 2.087 sec/image totalling to an estimated 46.9576 days 
for the complete dataset of 1.94m images. Next, we extracted 
the SIFT features using parallel architecture. We considered 
using cluster, grid and cloud for our experiments. As shown in 
Table I, we analysed the three on a number of properties [64] 
and found that using a cloud will suit our purpose the best. 
However, we also executed the MapReduce on a local, non-
cloud cluster to have a direct comparison. We ran the 
MapReduce on an 8-node local cluster with same 
configuration. It took the cluster 35.218 hours i.e. 1.46 days 
for execution, with a speedup of 32. However, we noticed that 
setting up our own cluster was restrictive because we could 
only expand to a certain number of devices. Also, there was a 
complicated and error-prone process of installation of 
distributed processing framework (we used Yahoo’s Hadoop), 
configuration of nodes, and using custom libraries (we used 
mrjob) for execution. We realized that the effort required to 
setup our own cluster was more than the benefits it brought. 
Hence, we moved to Amazon Cloud and used Hadoop 1.0.3 to 
 
 

 
 

Fig. 3: Comparison of Different Distributed Architectures [45] 
 

 
 

Fig. 4: MapReduce for fast Feature Identification 



 
 
 
run Elastic MapReduce. It was easier and cheaper to manage 
as all the installation and configuration load was taken away 
from us. Our final cluster comprised of 20 m4.large machines  
with the same configuration i.e 2.5 GHz, 2 vCPU, 6.5 ECU, 8 
GiB on linux. We used spot instances and they provided a 
reasonable trade-off between computation capacity and price 
[75]. Using this system, the same calculation was done in 
14.08 hours i.e. 0.586 days, thus giving us a speedup of 80 
times. Consider Figure 5 that shows a comparison of time 
consumed on local machine versus that on cluster and cloud. 
 
 
 
 
 

 

 
 
 

VII. CONCLUSION 
Feature extraction and identification is one of the prerequisite 
 of any computer vision application. It is a time consuming 
step and all the following steps are dependent on it. In this 
paper we used MapReduce on Amazon cloud to parallelize the 
computation and showed that a high speedup can be obtained 
without dealing with the complexities of parallel computing 
and programming. We considered a huge sandwich making 
dataset of 1.94 m images and used SIFT descriptor as the 
feature. On our local machine, it took an estimated 46.9576 
days to process the complete data. However, with our 
proposed approach of using EMR on Amazon cloud, the same 
was done in 0.586 days, thus resulting in a speedup of 80. In 
the future, we want to explore the effect of applying 
MapReduce in other phases of computer vision process like 
image alignment in case of multiple camera streams.
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