
MapReduce for High-Speed Feature Identification
for Computer Vision Applications

Shaheena Noor
PhD Scholar at Computer Engineering

Hamdard University,
Karachi, Pakistan.

shanoor@ssuet.edu.pk

Prof. Dr. Vali Uddin
Dean at Faculty of Engg. Sciences & Technology

Hamdard University,
Karachi, Pakistan.

vali.uddin@hamdard.edu.pk

Abstract—	 This paper presents a MapReduce-based
implementation of using high-dimensional image streams applied
to feature identification to provide fast computer vision
applications. We argue that feature identification is a
preliminary step of many computer vision tasks like object
recognition, activity understanding, content-based retrieval etc.
which is computationally expensive and often becomes a bottle-
neck in real-time applications. We considered the state-of-the-art
feature extraction method - Scale Invariant Feature Transform
(SIFT) - and used MapReduce to parallelize the computation. We
considered the sandwich making dataset from TUM, comprising
of 1.94 m images. Feature detection on a local machine took an
estimated of 46.9576 days while using MapReduce we were able
to process the same in much reduced time: 1.46 days on a 8-node
cluster and 0.586 days using 20 machines on Amazon cloud.
Hence, we achieved the same performance with a speedup of 32
and 80 on the two systems using Mapreduce. The major
contribution of this paper is that we proposed a method to use
MapReduce on cloud to increase computational speed of feature
extraction and matching for computer vision applications,
without incorporating the additional cost, resource-consumption
and expertise incurred due to parallelization.

Keywords—MapReduce; SIFT; Computer Vision, Cloud
computing, AWS

I. INTRODUCTION
As the computing devices proliferate into our everyday lives,
and we inch towards the pervasive computing paradigm, we
notice a broad range of innovative computing methods and
their applications. Technological globalization and advances
have led to a wide variety of modalities of collaborative
computing i.e. the use of multiple computing agents to solve
individual computational problems. The concept of
interdisciplinary exchange of information and collaboration
has resulted in a mushroom of innovative computing
applications. We see computer vision and image processing
joining hands with distributed computing; finance, economics
and business intelligence meeting data mining and big data
analytics; and biology and medicine hand-in-hand with
computers. Thus, many issues that seem daunting within a
particular domain are easily solved when integrated with
others.

As a scientific discipline, computer vision is the branch of

computing that extracts meanings out of visual data i.e. images
and videos. This data can be coming from single or multiple
cameras, covering static or dynamic scenes with changes in
viewpoints, illumination and/or scale; and may be noisy with a
lot of clutter. Interpreting the scenes on the basis of this data
and extracting information like object recognition and
tracking, activity recognition etc. can be challenging and time-
consuming in the real-world and involves a number of pre-
processing steps. Consider Figure 1 that shows the general
computer vision and image-processing framework. As can be
seen, all major computer vision and image processing
applications begin with some form of pre-processing including
feature extraction [1, 2]. As the size of data grows, this
prerequisite step becomes more and more time consuming,
and can become the bottle-neck in many real-time
applications. One of the solutions is to move towards
parallelization and process multiple images at once. The major
motivation behind the parallelization is that many advances in
high performance computing are occurring at an ever-
increasing pace. Especially with cloud computing emerging as
an alternative to supercomputers and taking out the inherent
complexity of parallel processing and programming from the
equation, has enabled researchers across diverse fields to
explore computation intensive solutions, which were
otherwise not possible. When deciding to exploit the
parallelizing potential in computer vision tasks, one can look
into a number of factors like parameters, images or pixels etc.
It turns out that the problem of handling one microscopic
image (e.g. 86273 by 81025 pixels 78.12 GB) is totally
different from the scenario of having a larger data set of
smaller images (e.g. 48469 images @ 6.5 MB/image 308 GB).
While, in the first case, the major problem is memory
management, in the later it is more about processing
efficiency. This calls for a platform where the task at hand can
be divided into smaller chunks and assigned to different
processing units that can work in parallel and distributed
environment.
The paper is organized as follows: We present a review of
existing literature on feature extraction and parallelism for
computer vision applications in Section II. Next, we give
details of SIFT in Section III. Sections IV and V introduce the
distributed computing paradigms and MapReduce for

computer vision applications. We discuss the experiments and
observations in Section VI and present the conclusions in
Section VII.

II. LITERATURE REVIEW
 Feature Extraction: One of the most important tasks in
computer vision and image processing is to extract features
from an image [1]. Features efficiently represent the image in
the form of unique interest points. Extracting features is useful
because it reduces the size of data, and the subsequent
computations consume less time. Feature extraction can be
based on shape, color, appearance etc. and may be represented
as histogram, Bag of Features [2] etc.

Shape detection [1]–[3] represents the information about
the geometric shape of an image. On the other hand, color
histogram is the representation of color values with the number
of pixels at each value. Typically a global histogram is
computed for the complete image. The main drawback of this
approach is the loss of regional information. As an alternative,
recent research uses grid based histogram by dividing the
image into sub region. The initial work in point a detector was
carried out by Moravec [4], which formed the basis for the
detection of salient points around the corners of an object.
Some other point detector like Harris [5] and Smallest
Univalue Segment Assimilating Nucleus (SUSAN) [5]–[7] for
corner detection do not form a descriptor. The process of
matching them is purely location based. They are typically
used for motion detection, image registration [8], video
tracking [9], image mosaicing [10], panorama stitching [11],
[12], 3D modeling and object recognition [13], [14]. Xiao and
Shah [15] introduced an affine invariant feature namely edge-
corner and it was based on Singular Value Decomposition
(SVD) of affine matrix that was robust for the matches over
two images. Tuytelaars and Van Gool [16] developed an
opportunistic system to exploit multiple invariant regions and
combine them to form a robust detector. Matas et al. [17]
introduced the Maximally Stable Extremal Regions, that handle
the significant change in scale, illumination conditions, out-of-
plane rotation, occlusion, locally anisotropic scale change and
3D translation of the viewpoint. Kadir et al. [18] developed an
interest point detector capable of handling generalized
invariance to affine transformation and superior insensitivity to
perturbations and intra-class variation performance for images
of certain object classes. One of the commonly used and
reliable detection mechanisms is SIFT (Scale Invariant Feature
Transform), introduced in 1999 by D.G. Lowe [19]–[23] which

embeds an image segment descriptor and is widely used in a
much complex environment like object recognition and large
baseline matching. It is scale and rotation invariant, gives
robust results for the changes in illumination and partially
invariant to different viewpoints. Over the past many years,
many algorithms have been proposed with SIFT as their basis.
Some of the renowned ones are Speeded Up Robust Features
(SURF) [24], Maximally Stable Extremal Regions (MSER)
[17], Gradient Location and Orientation Histogram (GLOH)
[25], Local Energy-based Shape Histogram (LESH) [26],
Binary Robust Independent Elementary Features (BRIEF) [27],
Binary Robust Invariant Scalable Keypoints (BRISK) [28],
Fast Retina Keypoint (FREAK) [29], Features from
Accelerated Segment Test(FAST) [30] and Oriented Fast and
Rotated BRIEF (ORB) [31]. Each of them targets a specific
performance aspect like speed, number of features, quality of
detection or description, but suffers from one or other
limitation. Hence, even after almost two decades, SIFT is still
widely used for feature detection. It returns a large number of
keypoints (in the order of 100s) and gives reliable matches.
However SIFT suffers from slow speed and is, therefore, not
suitable for real time applications. For these reasons we used
SIFT for our experiments.

Parallelism for Computer Vision Applications: Here we
describe the work done on distributed computing for image
processing and computer vision. We will not go into the
details of parallel computing and programming paradigms,
rather only cover their applications to computer vision tasks.
With the cost of capturing, uploading and storing of image and
video- data going down for the end-user, the data archives are
getting much larger than before. To make the most of this
data, we need paradigms that make it easier and faster to
process this huge amount of data. In recent years, attention has
been diverted to using distributed computing for processing
and indexing large-scale image datasets [32]–[36]. Previously,
researchers would develop, maintain and use their own
clusters or grids to solve their computation problems. E.g.
Seinstra et al. in [37]–[39] recognized the problem of ever-
growing dataset size and proposed a color-based object
recognition solution on an in-house grid. As cloud computing
became more popular, researchers started using it, so as to
transfer the load of setup and programming complexity off
from themselves. For example, in [40], Beksi et al. proposed a
cloud-based object recognition for robots. Another work by
Kehoe et al. [41], where they proposed the thin-client model to
move the complex computations to the Google cloud [42] and
communicate with the field devices (robot in their) online.
They were able to recognize and grasp simple household
objects using a Personal Robot (PR2) [43]. In [44], Paul and
Park performed multi-view object recognition using their
smart phone as a thin client and a computer server as a cloud.
They used their smartphone for image acquisition, developed a
codebook using the SIFT features and applied Bayes
classification for the final recognition. In a similar work,
Lorencik et al. [45] used SIFT, SURF and ORB for feature
extraction and used the Membership Function ARTMAP (MF
ARTMAP) and Gaussian Random Markov Field model for
object recognition over cloud.

Fig. 1: General Image Processing Framework

Classic solutions call for fine-grained control using
Message Passing Interface (MPI), however, it becomes overly
complicated. More recently researchers have started going for
divide-and-conquer approach and MapReduce falls under this
paradigm. The idea is to divide the huge data set into smaller
chunks and use the distributed cloud computing platforms to
process it using regular, low cost and low power computing
resources. The MapReduce framework is originally developed
by Google [46] and it is a programming model with the
supporting implementation for processing extremely large
datasets. It takes away the intricacies of parallel processing
and programming and the user has to simply specify two
functions: the map and the reduce. The Map function
processes a key/value pair to generate a set of intermediate
key/value pairs, and the Reduce function combines all
intermediate values associated with the same intermediate key
to give a final output. MapReduce is based on earlier
parallelization models e.g. [47] with the additional advantages
of providing a fault-tolerant implementation that scales to
thousands of processors. In recent years, attention has been
diverted to use MapReduce to solve computer vision problems
e.g. face tracking [48], landmark classification [49] and visual
tagging in photos [50]. In [51], Markonis et al. used
Mapreduce for medical image analysis. They developed an in-
house cluster and ran MapReduce to address a number of
image-analysis scenarios like parameter optimization for
Support Vector Machines, image indexing using SIFT and 3D
feature texture extraction. However, their major focus was on
developing the cluster and parallelizing tasks for increased
speed. This is different from our work in several ways. First,
our approach is generic and can be applied to a number of
indoor and outdoor scenarios. Moreover, we primarily focus
on demonstrating that including additional streams from
different viewpoints results in increased precision, at the cost
of computational time and we handle the time cost by
parallelization using MapReduce. Another work by Han et al.
[52] presents a MapReduce approach for SIFT extraction.
They reformed the original SIFT using MapReduce to make
the extraction faster. The benefit of this approach is, however,
evident in cases involving high definition images with high
resolution and large number of pixels. Our scenario basically
deals with large number of low to medium- resolution images
coming from multiple streams and thus defines a totally
different use case.

There are a number of scenarios where MapReduce is not
the best choice, e.g. DeWitt et al. [53] compared MapReduce
with parallel database query systems and argued that it is
much less sophisticated and efficient. According to [54],
MapReduce model imposes strong assumptions on
dependence of data and its results are based on these
assumptions. Chu et al. in [55] pointed out that the model
hugely depends on the communication channels and is prone
to failure due to underlying technological failures. They
remarked that the master node can become a single point of
failure of the complete system. In [56] Ma and Gu denounced
these points claiming that these are not “significant”
limitations and also not technically a problem. However,

according to them, the problem with MapReduce is that it’s
“one-way scalable”, which means that by-design it allows to
scale up to process large datasets, but in turn limits the
capability to process smaller data items. Some other
limitations mentioned by the community [57], [58] in general
are that it’s only for batch processing and not for interactive,
iterative, streaming or incremental processing. It is also not
suitable when there are too many keys because then sorting
takes too long. MapReduce is not considered to be a good
solution if the values depend on each other from one step to
another. However, these limitations do not apply to our work,
because in our case, we have clearly separated data set
available for batch processing, where the values from one
frame do not depend on the other.

More recently, researchers are looking towards Apache
Spark [59] (initial release in 2014) as a fast, easy-to-use and
realtime alternative to MapReduce; however for our scenario,
MapReduce suits better because the high speed of Spark is
relevant in scenarios when the “same” data has to be
processed multiple times like in visualization applications. In
our work the data is continuously changing and each frame
needs to be processed only once. Similarly, our data is
available as a batch and hence we do not need any real-time
processing.

III. SIFT FOR FEATURE IDENTIFICATION
One of the first steps to computer vision applications is to

extract the representative features and match them against a
model. Some earlier work e.g. [60]–[62] proposed to use raw
pixels for an effective initial feature representation for
learning. However, this requires the overall number of pixels
to be small, which is rarely the case in current imaging
scenarios. E.g. in our dataset, each image is 1920 x 1080.
Including the multi-camera views, the overall number of
pixels becomes overwhelmingly large and hence
computationally expensive. Most of the current work adopts
the alternative approach to extract representative features for
compact and effective representation. In the remainder of this
section, we present an overview to the Scale Invariant Feature
Transform – SIFT.

Though SIFT is one of the oldest techniques, it is the most
reliable one that is still being used in most computer vision
algorithm for object detection and tracking, robotic mapping
and large scale image retrieval. The only disadvantage is that
it takes more computation time and cannot be applied in real
time environment. Aniruddha Acharya K and R. Venkatesh
Babu presented a parallel implementation of SIFT on a GPU
[63], in which they combined kernel optimization that has led
to a significant improvement. In this paper we’ve overcome
this problem by applying MapReduce for parallel feature
extraction.

SIFT offers a number of advantages like scale-, rotation-
and viewpoint- invariance and robustness to illumination
changes. SIFT is extracted by progressively resizing and
blurring out images to find features that are stable across a
number of scales. Each set of images at a given size is referred
to an octave. Blurring is performed by taking the convolution

of the Gaussian operator and the original image and it is
applied to each pixel of an image. Mathematically, it is done
using Eq (1).
 L(x, y,σ) = G(x, y,σ) * I (x, y) (1)
where
I and L àOriginal and Blurred Images
G à Gaussian Blur operator
x, yà Location Coordinates
σ à Scale parameter or Amount of blur in a particular image.

(Typically σ = 2)
* à Convolution operation in x and y
The Gaussian blur operator is defined by Eq (2)

 G(x, y,σ) = e
−(x2+y2)/2σ 2

2λσ 2
 (2) (2)

Next it is needed to identify the keypoints which are maxima/
minima over multiple scales. For this purpose Difference of
Gaussian (DoG) is computed. Specifically, a DoG image D(x,
y, σ) is given by Eq (3).
 D(x, y,σ) = L(x, y,kiσ) − L(x, y,k jσ) (3)

where ki and kj represents two adjacent scales.
Next, each pixel is compared with its neighbors (i.e 8

comparison), its above image (i.e 9 comparisons) and its
below image (i.e 9 comparison) making a total of 26 checks. It
is considered as a keypoint if it is the extrema among all of its
26 neighbors. Next, to achieve rotation invariance the
Gaussian-smoothed image L(x, y, σ) for all levels of scale σ
are considered. For each and every pixel, which is around the
region of a keypoint, the magnitude and angle is calculated
using Eqs. (4) & (5) in the Gaussian-blurred image L.

 m(x, y) = (L(x+1,y) − L(x−1,y))
2 + (L(x,y+1) − L(x,y−1))

2 (4)

and

 θ (x, y) = tan−1
(L(x ,y+1) − L(x ,y−1))
(L(x+1,y) − L(x−1,y))

 (5)

where
m(x, y) à the gradient magnitude and θ(x, y) à orientation
Finally a descriptor vector for each keypoint is computed. This
step is performed on the image closest in scale to the
keypoint’s scale. For this purpose a 16 x 16 pixel region is
considered around each keypoint and is sub divided into 4 x 4
sub regions. A set of orientation histogram is created on 4 x 4
subregions with 8 bins each resulting in a descriptor 128
elements.

Consider Figure 2 that represents the SIFT keypoints for
an image.

IV. DISTRIBUTED COMPUTING PARADIGMS
Cluster-, grid- and cloud- computing are the most

widely used distributed computing paradigms [64]. A number
of attempts have been made to define the three from a number
of perspectives e.g. [64]–[67]. Clouds are a collection of low-
and high- end computers supporting virtualized nodes, which
are provisioned on-demand and accessible as composable
service via Web Service technologies such as Simple Object
Access Protocol (SOAP) [68] or Representational State
Transfer (REST) [69]. Clusters are typically under a single
administrative domain and this distinguishes them from grids,
which are spread geographically and are administered by
multiple management policies and goals. Also clusters focus
on enhancing overall system performance, while grids
enhance application performance depending on the end-users’
Quality-of-Service (QoS) requirements. A comparison of
different distributed computing systems is given in Figure 3.

V. MAPREDUCE FOR COMPUTER VISION
APPLICATIONS

Many image and video processing tasks typically comprise
of a basic set of computation steps applied to a large amount
of data. For example, a typical 3-minute video sequence shot
@60 frames per second (FPS) results in over 10K images,
with the number growing drastically as we add multiple
viewpoints (cameras), longer sequences or higher frame rate
etc. As shown in Figure 1, there are certain pre-processing and
feature identification steps which need to be applied to each
frame independently, before a model could be generated for
the actual application. MapReduce supports scenarios like
these where the same computation is desired on a stream of
independent datapoints. Hence, the problem is divided into
“mappers” that perform the feature extraction on the images in
parallel; and “reducers” that aggregates the results.

MapReduce stands on the key-value pairs as the basic data
structure. Keys and values can be as simple as primitives data
types such as integers, floating points, strings, and even raw
bytes, or they may be more complex structures like tuples,
lists etc [70]. For our work, they are the image descriptors.

As described above, the programmer has to define a Map
and a Reduce function which typically take the form as shown
in Equations (6) and (7) [70]:
 map : (k1,v1)→ [(k2 ,v2)] (6)

 reduce : (k2,[v2])→ [(k3,v3)] (7)
where, [...] represent a list of elements. The mapper is applied
to each input data point (images in our case) and generates an
arbitrary number of intermediate key-value pairs (SIFT
points). This is followed by an implicit “ordering” or
“grouping” phase to sort the keys. This is important for
handling the distribution of data across multiple machines.
Finally, the reducer is applied to all the values with the
common intermediate key to generate the final key-value
pairs.
Consider Figure 4 where we show MapReduce applied to
parallelize our scenario. It is important to note that most of the
subsequent steps in image processing applications are

Fig. 2: SIFT points calculated for a sample image

dependent on the initial time-intensive step of feature
extraction. The number of datapoints depend on SIFT feature
in each image, the number of images in each stream and the
number of streams as shown in Eq. (8). Simple maths show
that this number is quite high for any typical scene and rises
quickly if we increase number of streams and/or images in any
stream. In our work, we’ve exploited the parallelism while
extracting features. Each mapper takes an image one-after-
another as input and returns a set of SIFT-descriptors
alongwith the location. The reducer using the function
UPDATEMODEL aggregates these points from multiple
streams and prepares them for subsequent steps. Consider
Algorithm 1 that shows the algorithm for our scenario.

 Datapo int s = (Feature
ijk , locijk)i=0

l
∑

j=0

m
∑

k=0

n
∑ (8)

where,
l: no. of features in an image,
m: no. of frames in a camera stream and
n: no. of camera streams.

Algorithm 1 Algorithm for computing feature identification using
MapReduce. The UPDATEMODEL function combines the individual features
from all images for subsequent processing
1: Class Map
2: method MAP (imageID d, image i)
3: [<f, l>] ß ComputeFeature(image i)
4: EMIT(tuple<imageID d>,tuple<feature[f],location[l]>)
5: Class Reduce
6: method Reduce(tuple< image d>, tuples[t1, t2, ...])
7: MßINITMODEL()
8: for all <image d> ϵ tupleID do:
9: for all tuple<feature[f], location[l]> ϵ features do:
10: UPDATEMODEL (imageID d, feature[f],location[l],
 model M)
11: YIELD (id m, Model M)

VI. EXPERIMENTS AND OBSERVATIONS
We considered the sandwich making scenario of the kitchen
dataset from experiments conducted at the Technische
Universität München (TUM) [71]. The sandwich making
experiment comprises of 10 subjects, each having 18
iterations. Each set lasts for approximately 3 minutes, which
implies a video of 570 minutes. This implies a dataset of
1.94m images @ 60 FPS. As described earlier, extracting
features from this huge dataset is a pre-requisite, before a
model can be generated and trained. This is a time-consuming
step and we used the Amazon cloud to run Elastic MapReduce
(EMR) to manage the high computation cost for the huge
number of images. Using MapReduce allowed us to manage
the high computation cost resulting due to the multiple input
streams. We explored HIPI [72] - a Hadoop Image Processing
Interface designed specifically for image-based MapReduce
tasks and supports computer vision algorithms, however, we
decided not to go for it as the technology is not yet mature,
and hence there is a lack of benchmarks and expertise [73].
Also, HIPI is not suitable for such a huge dataset [74]. SIFT
computation on local machine (2.5 GHz, dual-core, 8 GiB)
took 2.087 sec/image totalling to an estimated 46.9576 days
for the complete dataset of 1.94m images. Next, we extracted
the SIFT features using parallel architecture. We considered
using cluster, grid and cloud for our experiments. As shown in
Table I, we analysed the three on a number of properties [64]
and found that using a cloud will suit our purpose the best.
However, we also executed the MapReduce on a local, non-
cloud cluster to have a direct comparison. We ran the
MapReduce on an 8-node local cluster with same
configuration. It took the cluster 35.218 hours i.e. 1.46 days
for execution, with a speedup of 32. However, we noticed that
setting up our own cluster was restrictive because we could
only expand to a certain number of devices. Also, there was a
complicated and error-prone process of installation of
distributed processing framework (we used Yahoo’s Hadoop),
configuration of nodes, and using custom libraries (we used
mrjob) for execution. We realized that the effort required to
setup our own cluster was more than the benefits it brought.
Hence, we moved to Amazon Cloud and used Hadoop 1.0.3 to

Fig. 3: Comparison of Different Distributed Architectures [45]

Fig. 4: MapReduce for fast Feature Identification

run Elastic MapReduce. It was easier and cheaper to manage
as all the installation and configuration load was taken away
from us. Our final cluster comprised of 20 m4.large machines
with the same configuration i.e 2.5 GHz, 2 vCPU, 6.5 ECU, 8
GiB on linux. We used spot instances and they provided a
reasonable trade-off between computation capacity and price
[75]. Using this system, the same calculation was done in
14.08 hours i.e. 0.586 days, thus giving us a speedup of 80
times. Consider Figure 5 that shows a comparison of time
consumed on local machine versus that on cluster and cloud.

VII. CONCLUSION
Feature extraction and identification is one of the prerequisite
 of any computer vision application. It is a time consuming
step and all the following steps are dependent on it. In this
paper we used MapReduce on Amazon cloud to parallelize the
computation and showed that a high speedup can be obtained
without dealing with the complexities of parallel computing
and programming. We considered a huge sandwich making
dataset of 1.94 m images and used SIFT descriptor as the
feature. On our local machine, it took an estimated 46.9576
days to process the complete data. However, with our
proposed approach of using EMR on Amazon cloud, the same
was done in 0.586 days, thus resulting in a speedup of 80. In
the future, we want to explore the effect of applying
MapReduce in other phases of computer vision process like
image alignment in case of multiple camera streams.

REFERENCES
 [1] T. Kobayashi, “BFO Meets HOG: Feature Extraction Based on

Histograms of Oriented p.d.f. Gradients for Image Classification,” in
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE
Conference on, June 2013, pp. 747–754.

[2] C. T. Dadi El Wardani, Daoudi El Mostafa, “Improving 3D Shape
Retrieval Methods based on Bag-ofFeature Approach by using Local
Codebooks,” International Journal of future Generation
Communication and Networking, vol. 5 (4), pp. 29 – 38, 2012.

[3] A.Srinagesh, K.Aravinda, G. Varma, A.Govardhan, and M. SreeLatha,
“A Modified Shape Feature Extraction Technique For Image

TABLE 1: Comparison of Cluster, Grid and Cloud. An adaption of [64]
Characteristics Systems Preferred
 Clusters Grids Clouds
Population Commodity computers High-end computers (servers

clusters)
Commodity computers and high end
servers and network attached storage

Cluster, Cloud

Size/scalability 100s 1000s 100s – 1000s Cluster, Cloud
Node Operating System (OS) One of the standard OSs

(Linux/ Windows)
Any standard OS (dominated
by Unix)

A hypervisor (VM) on which
multiple Oss run

Cluster, Cloud, Grid

Ownership Single Multiple Single Cluster, Cloud, Grid
Interconnection network/
speed

Dedicated, high-end with low
latency and high bandwidth

Mostly Internet with high
latency and low bandwidth

Dedicated, high-end with low latency
and high bandwidth

Cluster, Cloud, Grid

User management Centralized Decentralized and also
Virtual Organization based

Centralized or can be delegated to
third party

Cloud

Resource management Centralized Distributed Centralized/ distributed Cloud
Allocation/ scheduling Centralized Decentralized Centralized/ decentralized Cloud
Standards/ inter-operability Virtual Interface Architecture Open grid forum standard Web Services (SOAP and REST) Cloud
Single system image Yes No Yes but optional Cluster, Cloud
Capacity Stable and guaranteed Varies, but high Provisioned on demand Cloud
Failure management (self
healing)

Limited (often failed tasks/
applications are restarted)

Limited (often failed tasks/
applications are restarted)

Strong support for fail over and
content replication. VMs can be
easily migrated from one node to
another

Cloud

Pricing of services Limited, not open market Dominated by public good or
privately assigned

Utility pricing, discounted for larger
customers

Cloud

Internetworking Multi-clustering within an
organization

Limited adoption, but being
explored through research
efforts

High potential, third party solution
providers can loosely tie together
services of different clouds

Cloud

Application drivers Science, business, enterprise Collaborative scientific and
high throughput applications

Dynamically provisioned legacy and
web applications, content deliver

Cluster, cloud, grid

Potential building for 3rd
party or value added
solutions

Limited due to rigid
architecture

Limited due to strong
orientation for scientific
computing

High - can create new services by
dynamically provisioning compute,
storage and application services

Cloud

Fig. 5: Execution Time Comparison

Retrieval,” International Journal of Emerging Science and Engineering
(IJESE), vol. 1 (8), pp. 9 – 13, June 2013.

[4] H. Moravec, “Obstacle Avoidance and Navigation in the Real World by
a Seeing Robot Rover,” in Tech. report CMU-RI-TR-80-03, Robotics
Institute, Carnegie Mellon University & doctoral dissertation, Stanford
University, September 1980, no. CMU-RI-TR-80-03.

[5] C. Harris and M. Stephens, “A combined corner and edge detector,” in
Proc. of Fourth Alvey Vision Conference, 1988, pp. 147 – 151.

[6] Y. Xingfang, H. Yumei, and L. Yan, “An improved SUSAN corner
detection algorithm based on adaptive threshold,” in Signal Processing
Systems (ICSPS), 2010 2nd International Conference on, vol. 2, July
2010, pp. V2–613–V2–616.

[7] S. M. Smith and J. M. Brady, “SUSAN - A New Approach to Low
Level Image Processing,” International Journal of Computer Vision,
vol. 23, no. 1, pp. 45–78, 1997. [Online]. Available:
http://dx.doi.org/10.1023/A:1007963824710

[8] A. Sotiras, C. Davatzikos, and N. Paragios, “Deformable Medical
Image Registration: A Survey,” IEEE Transactions on Medical
Imaging, vol. 32, no. 7, pp. 1153–1190, July 2013.

[9] E. Trucco and K. Plakas, “Video Tracking: A Concise Survey,” IEEE
Journal of Oceanic Engineering, vol. 31, no. 2, pp. 520–529, April
2006.

[10] R. Szeliski, “Image mosaicing for tele-reality applications,” in
Applications of Computer Vision, 1994., Proceedings of the Second
IEEE Workshop on, Dec 1994, pp. 44–53.

[11] Y. Xiong and K. Pulli, “Fast panorama stitching for high-quality
panoramic images on mobile phones,” IEEE Transactions on Consumer
Electronics, vol. 56, no. 2, pp. 298–306, May 2010.

[12] M. Brown and D. G. Lowe, “Automatic Panoramic Image Stitching
using Invariant Features,” International Journal of Computer Vision,
vol. 74, no. 1, pp. 59–73, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s11263-006-0002-3

[13] S.-W. Ha and Y.-H. Moon, “Multiple Object Tracking Using SIFT
Features and Location Matching,” International Journal of Smart
Home, vol. 5 (4), pp. 17 – 26, October 2011.

[14] F. Arman and J. K. Aggarwal, “Model-based object recognition in
denserange imagesa review,” ACM Computing Surveys (CSUR), vol.
25 (1), pp. 5–43, March 1993.

[15] J. Xiao and M. Shah, “Two-frame wide baseline matching,” in
Computer Vision, 2003. Proceedings. Ninth IEEE International
Conference on, Oct 2003, pp. 603–609 vol.1.

[16] T. Tuytelaars and L. Van Gool, “Matching Widely Separated Views
Based on Affine Invariant Regions,” International Journal of Computer
Vision, vol. 59, no. 1, pp. 61–85, 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:VISI.0000020671.28016.e8

[17] J. Matas, O. Chum, M. Urban, and T. Pajdl, “Robust wide-baseline
stereo from maximally stable extremal regions,” Image and Vision
Computing, vol. 22(10), pp. 761 – 767, Sept 2004

[18] T. Kadir, A. Zisserman, and M. Brady, An Affine Invariant Salient
Region Detector. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 228–241. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
24670-1 18

[19] D. G. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints,” Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, Nov.
2004.[Online].Available:
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94

[20] T. Lindeberg, “Scale Invariant Feature Transform,” Scholarpedia, vol.
7 No. (5), no. 10491, 2012.

[21] D. G. Lowe, “Object Recognition from Local Scale Invariant Features,”
in Proceedings of the International Conference on Computer Vision-
Volume 2 - Volume 2, ser. ICCV ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 1150–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=850924.851523

[22] H. K. P. Pandya, J. Senjalia, “Evaluating the object recognition in
realtime process,” Nirma University International Conference
Engineering (NUiCONE), pp. 1 – 6, 2013.

[23] K. Aniruddha Acharya and R. Venkatesh Babu, “Speeding up SIFT
using GPU,” in Computer Vision, Pattern Recognition, Image
Processing and Graphics (NCVPRIPG), 2013 Fourth National
Conference on, Dec 2013,pp. 1–4.

[24] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-Up Robust
Features (SURF),” Computer Vision and Image Understanding, pp.
346– 359, 2008

[25] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005. [Online]. Available:
http://lear.inrialpes.fr/pubs/2005/MS05

[26] M. Sarfraz and O. Hellwich, “On Head Pose Estimation in Face
Recognition,” in Computer Vision and Computer Graphics. Theory and
Applications, ser. Communications in Computer and Information
Science, A. Ranchordas, H. Arajo, J. Pereira, and J. Braz, Eds. Springer
Berlin Heidelberg, 2009, vol. 24, pp. 162–175. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10226-4 13

[27] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P.
Fua, “BRIEF: Computing a Local Binary Descriptor Very Fast,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no.
7, pp. 1281–1298, July 2012.

[28] S. Leutenegger, M. Chli, and R. Y. Siegwart, “BRISK: Binary Robust
Invariant Scalable Keypoints,” in Computer Vision (ICCV), 2011 IEEE
International Conference on, Nov 2011, pp. 2548–2555.

[29] P. V. Alexandre Alahi, Raphael Ortiz, “FREAK: Fast Retina
Keypoint,” in Proceedings of the 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), ser. CVPR ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 510–517. [Online].
Available: http://dl.acm.org/citation.cfm?id=2354409.2354903

[30] E. Rosten and T. Drummond, “Machine learning for high-speed corner
detection,” in In European Conference on Computer Vision, 2006, pp.
430 – 443.

[31] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “ORB: An
efficient alternative to SIFT or SURF,” in Computer Vision (ICCV),
2011 IEEE International Conference on, Nov 2011, pp. 2564–2571.

[32] K. Potisepp, “Large-scale image processing using MapReduce,”
Master’s thesis, Faculty of Mathematics and Computer Science
Institute of Computer Science, 2013.

[33] D. Moise, D. Shestakov, G. Gudmundsson, and L. Amsaleg, “Indexing
and searching 100m images with MapReduce,” in Proceedings of the
3rd ACM Conference on International Conference on Multimedia
Retrieval (ICMR), ser. ICMR ’13. New York, NY, USA: ACM, 2013,
pp.17–24.[Online].Available:
http://doi.acm.org/10.1145/2461466.2461470

[34] M. Yamamoto and K. Kaneko, “Parallel image database processing
with MapReduce and performance evaluation in pseudo distributed
mode,” International Journal of Electronic Commerce Studies, vol. 3
Issue (2), pp. 211 – 228, 2012.

[35] V. A. Natarajan, S. Jothilakshmi, and V. N. Gudivada, “Scalable
Traffic Video Analytics using Hadoop MapReduce,” The First
International Conference on Big Data, Small Data, Linked Data and
Open Data, pp. 11 – 15, April 2015.

[36] Y. J. Yu and K. Hu, “Mono Image Based Object Recognition With
MapReduce,” 2014.

[37] F. Seinstra and J. Geusebroek, “Color-Based Object Recognition on a
Grid,” 2006.

[38] F. J. Seinstra and J. M. Geusebroek, “A Demonstration of Color-Based
Object Recognition on a Grid.”

[39] F. J. Seinstra and J.-M. Geusebroek, “Color-Based Object Recognition
by a Grid-Connected Robot Dog.”

[40] W. J. Beksi, J. Spruth, and N. Papanikolopoulos, “CORE: A Cloud
based Object Recognition Engine for robotics,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Sept 28 Sept 2015 - 02 Oct 2015, pp. 4512–4517.

[41] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg,
“Cloud-based robot grasping with the google object recognition
engine,” in IEEE Intl Conf. on Robotics and Automation, 2013.

[42] “Cloud Storage - A Powerful, Simple and Cost Effective Object
Storage Service.” [Online]. Available:
https://cloud.google.com/storage/

[43] W. Garage, “Personal Robot 2.” [Online]. Available:
http://www.willowgarage.com

[44] A. K. Paul and J. S. Park, “Multiclass object recognition using smart
phone and cloud computing for augmented reality and video
surveillance applications,” in Informatics, Electronics Vision (ICIEV),
2013 International Conference on, May 17 - 18 May 2013, pp. 1–6.

[45] D. Lorencik, M. Tarhanicova, and P. Sincak, Robot Intelligence
Technology and Applications 2: Results from the 2nd International
Conference on Robot Intelligence Technology and Applications. Cham:
Springer International Publishing, 2014, ch. Cloud-Based Object
Recognition: A System Proposal, pp. 707–715. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-05582-4 61

[46] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Sixth Symposium on Operating System Design and
Implementation (OSDI), December 2004.

[47] R. E. Ladner and M. J. Fischer, “Parallel prefix computation,” Journal
of the ACM (JACM), vol. 27 Isuue (4), no. 4, pp. 831–838, Oct.
October 1980. [Online]. Available:
http://doi.acm.org/10.1145/322217.322232

[48] K.-Y. Liu, S.-Q. Li, L. Tang, L. Wang, and W. Liu, “Fast face tracking
using parallel particle filter algorithm,” in Multimedia and Expo, 2009.
ICME 2009. IEEE International Conference on, June 28 June - 3 July
2009, pp. 1302–1305.

[49] Y. Li, D. J. Crandall, and D. P. Huttenlocher, “Landmark classification
in large-scale image collections,” in Computer Vision, 2009 IEEE 12th
International Conference on, Sept 2009, pp. 1957–1964.

[50] K. Lyndon, S. Malcolm, and W. Kilian, “Reliable Tags Using Image
Similarity: Mining Specificity and Expertise from Largescale
Multimedia Databases,” in Proceedings of the 1st Workshop on Web-
scale Multimedia Corpus, ser. WSMC ’09. New York, NY, USA:
ACM, 2009, pp. 17–24. [Online]. Available: http:
//doi.acm.org/10.1145/1631135.1631139

[51] D. Markonis, R. Schaer, I. Eggel, H. Mller, and A. Depeursinge,
“Using MapReduce for Large-Scale Medical Image Analysis,” in
Healthcare Informatics, Imaging and Systems Biology (HISB), 2012
IEEE Second International Conference on, Sept 2012.

[52] W. Han, Y. Kang, Y. Chen, and X. Zhang, “A MapReduce Approach
for SIFT Feature Extraction,” in Cloud Computing and Big Data
(CloudCom-Asia), 2013 International Conference on, Dec 2013, pp.
465–469.

[53] D. DeWitt and M. Stonebraker, “MapReduce: A major step
backwards,” 2010. [Online]. Available: http://databasecolumn.vertica.
com/database-innovation/mapreduce-a-major-step-backwards/

[54] Y. Yu, M. Isard, D. Fetterly, M. Budiu, lfar Erlingsson, P. K. Gunda,
and J. Currey, “DryadLINQ: a system for general-purpose distributed
data parallel computing using a high-level language,” Proceeding
OSDI’08 Proceedings of the 8th USENIX conference on Operating
systems design and implementation, pp. 1 – 14, 2008.

[55] C.-T. Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski, K. Olukotun, and
A. Y. Ng, “Map-Reduce for Machine Learning on Multicore,” in
Advances in Neural Information Processing Systems 19, B.
Schoelkopf, J. C. Platt, and T. Hoffman, Eds. MIT Press, 2007, pp.
281–288. [Online]. Available: http://papers.nips.cc/paper/3150-map-
reduce-for-machine-learning-on-multicore.pdf

[56] Z. Ma and L. Gu, “The Limitation of MapReduce: A Probing Case and
a Lightweight Solution,” The First International Conference on Cloud
Computing, GRIDs, and Virtualization (CLOUD COMPUTING 2010).

[57] [Online]. Available: https://www.quora.com/What-are-some-
limitations-of-MapReduce

[58] [Online].Available:
http://stackoverflow.com/questions/18585839/what-are-the-
disadvantages-of-mapreduce

[59] [Online]. Available: http://spark.apache.org/
[60] G. E. Hinton, “Learning multiple layers of representation,” TRENDS in

Cognitive Sciences, vol. 11 No, (10), pp. 428 – 434, 2007.
[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

Classification with Deep Convolutional Neural Networks,” in
Advances in Neural Information Processing Systems 25, F. Pereira, C.
J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2012, pp. 1097–1105. [Online]. Available:
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf

[62] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, Computer Vision –
ECCV 2010: 11th European Conference on Computer Vision,
Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part VI.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, ch.
Convolutional Learning of Spatio-temporal Features, pp. 140 – 153.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-15567-3 11

[63] K. A. Acharya and R. V. Babu, “Speeding up SIFT using GPU,” Fourth
National Conference on Computer Vision, Pattern Recognition, Image
Processing and Graphics (NCVPRIPG), pp. 1 – 4, 2013.

[64] R. Buyya, C. S. Yeo, S. Venugopal, and J. B. and Ivona Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility,” Future Generation
Computer Systems, vol. 25 issue(6), pp. 599 – 616, June 2009.

[65] J. Geelan, “Twenty-one experts define cloud computing,” Cloud Expo
Journal, 24 January 2009.

[66] G. F. Pfister, In Search of Clusters (2nd Ed.). Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1998.

[67] R. Buyya, High Performance Cluster Computing: Architectures and
Systems. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[68] [Online]. Available: https://en.wikipedia.org/wiki/SOAP
[69] [Online].Available:

https://en.wikipedia.org/wiki/Representational_state_transfer
[70] J. Lin and C. Dyer, Data-Intensive Text Processing with MapReduce.

Morgan & Claypool Publishers, 2010.
[71] “TUM cooking datasets.” [Online]. Available:

http://web.ics.ei.tum.de/_karinne/Dataset/dataset.html
[72] C. Sweeney et al “HIPI: A Hadoop Image Processing Interface for

Image- based MapReduce Tasks,” University of Virginia,
Undergraduate Thesis, 2011.

[73] S. M. Banaei and H. K. Moghaddam, “Hadoop and Its Role in Modern
Image Processing,” Open Journal of Marine Science, vol. 4, issue (4)
October 2014. http://dx.doi.org/10.4236/ojms.2014.44022

[74] B. Kanoongo, P Jagani and C. Bhadane, “Distinction of Discrete
Transformations Applied to Hadoop’s MapReduce,” International
Journal of Computer Applications, vol. 104, issue (10), pp. 0975 –
8887, October 2014.

[75] “Amazon EC2 pricing.” [Online]. Available:
https://aws.amazon.com/ec2/pricing/

